Rapid ATP-induced release of matrix metalloproteinase 9 is mediated by the P2X7 receptor.
نویسندگان
چکیده
Matrix metalloproteinase-9 (MMP-9) activity is required for inflammatory response, leukocyte recruitment, and tumor invasion. There is increasing evidence suggesting that the P2X(7) receptor of mononuclear cells, which is activated by extracellular adenosine triphosphate (ATP), is involved in inflammatory responses. In this study, ATP caused a rapid release of MMP-9 and a moderate decrease in tissue inhibitor of metalloproteinase 1 (TIMP-1) release from human peripheral-blood mononuclear cells (PBMCs) over a 30-minute time course. The release was time- and dose-dependent and dissociated from ATP-induced cell death. BzATP, which is the most potent agonist for the P2X(7) receptor, also caused a similar effect at a lower dosage. ATP-induced MMP-9 release was inhibited by the P2X(7) receptor antagonists periodate oxidized ATP and KN-62, or by calcium chelators, as well as by a loss-of-function polymorphism in the P2X(7) receptor, but not by brefeldin A, monensin, or cycloheximide, or by anti-tumor necrosis factor-alpha (TNF-alpha) or anti-interleukin-1beta (IL-1beta) monoclonal antibodies. Results from purified subsets of PBMCs showed monocytes were the major source for MMP-9 and TIMP-1 release, and ATP remained effective in purified monocyte and T-cell populations. These observations suggest a novel role for P2X(7) as a pro-inflammatory receptor involved in rapid MMP-9 release and leukocyte recruitment.
منابع مشابه
N-Alkyl-Substituted Isatins Enhance P2X7 Receptor-Induced Interleukin-1β Release from Murine Macrophages
Extracellular adenosine 5'-triphosphate (ATP) activates the P2X7 receptor channel to induce the rapid release of the proinflammatory cytokine, interleukin- (IL-) 1β, from macrophages. Microtubule rearrangements are thought to be involved in this process. Some isatin derivatives alter microtubules and display anticancer activities. The current study investigated the effect of isatin and seven st...
متن کاملP 107: P2x7 Receptors: as a Novel Targets for the Treatment of Neuroinflammation
P2x7 receptors are Purineric receptors that are extracellular ATP-gated ion channel. These receptors require high dose or prolonged exposure to ATP for initial activation. The Activation of these receptors facilitates the formation of inflammasome which activates caspase 1. The P20 and P10 subunits of caspase 1 form active enzyme that then releases active interleukin (IL)-1 β and IL-18, tu...
متن کاملRhein antagonizes P2X7 receptor in rat peritoneal macrophages
P2X7 receptor plays important roles in inflammation and immunity, and thereby it serves as a potential therapeutic target for inflammatory diseases. Rhein, an anthraquinone derivative, exhibits significant anti-inflammatory and immunosuppressive activities in therapy. However, the underlying mechanisms are largely unclear. Here, we aimed to investigate the effects of rhein on P2X7 receptor-medi...
متن کاملPurinergic signaling mediates oxidative stress in UVA-exposed THP-1 cells
Ultraviolet A (UVA) radiation, the major UV component of solar radiation, can penetrate easily to the dermis, where it causes significant damage to cellular components by inducing formation of reactive oxygen species (ROS). On the other hand, extracellular ATP is released in response to various stimuli, and activates purinergic P2X7 receptor, triggering ROS production and cell death. Here, we e...
متن کاملActivation of the P2X7 receptor induces the rapid shedding of CD23 from human and murine B cells.
Activation of the P2X7 receptor by the extracellular damage-associated molecular pattern, adenosine 5'-triphosphate (ATP), induces the shedding of cell surface molecules including the low-affinity IgE receptor, CD23, from human leukocytes. A disintegrin and metalloprotease (ADAM) 10 mediates P2X7-induced shedding of CD23 from multiple myeloma RPMI 8226 B cells; however, whether this process occ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 107 12 شماره
صفحات -
تاریخ انتشار 2006